Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks
نویسندگان
چکیده
This work investigates the use of deep fully convolutional neural networks (DFCNN) for pixel-wise scene labeling of Earth Observation images. Especially, we train a variant of the SegNet architecture on remote sensing data over an urban area and study different strategies for performing accurate semantic segmentation. Our contributions are the following: 1) we transfer efficiently a DFCNN from generic everyday images to remote sensing images; 2) we introduce a multi-kernel convolutional layer for fast aggregation of predictions at multiple scales; 3) we perform data fusion from heterogeneous sensors (optical and laser) using residual correction. Our framework improves state-of-the-art accuracy on the ISPRS Vaihingen 2D Semantic Labeling dataset.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملProgressively Diffused Networks for Semantic Image Segmentation
This paper introduces Progressively Diffused Networks (PDNs) for unifying multi-scale context modeling with deep feature learning, by taking semantic image segmentation as an exemplar application. Prior neural networks such as ResNet [11] tend to enhance representational power by increasing the depth of architectures and driving the training objective across layers. However, we argue that spati...
متن کاملSegment-before-Detect: Vehicle Detection and Classification through Semantic Segmentation of Aerial Images
Like computer vision before, remote sensing has been radically changed by the introduction of deep learning and, more notably, Convolution Neural Networks. Land cover classification, object detection and scene understanding in aerial images rely more and more on deep networks to achieve new state-of-the-art results. Recent architectures such as Fully Convolutional Networks can even produce pixe...
متن کاملDeep Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Imagery
A semantic segmentation algorithm must assign a label to every pixel in an image. Recently, semantic segmentation of RGB imagery has advanced significantly due to deep learning. Because creating datasets for semantic segmentation is laborious, these datasets tend to be significantly smaller than object recognition datasets. This makes it difficult to directly train a deep neural network for sem...
متن کامل